/
opt
/
cloudlinux
/
venv
/
lib64
/
python3.11
/
site-packages
/
numpy
/
Upload Filee
HOME
""" ============================ ``ctypes`` Utility Functions ============================ See Also -------- load_library : Load a C library. ndpointer : Array restype/argtype with verification. as_ctypes : Create a ctypes array from an ndarray. as_array : Create an ndarray from a ctypes array. References ---------- .. [1] "SciPy Cookbook: ctypes", https://scipy-cookbook.readthedocs.io/items/Ctypes.html Examples -------- Load the C library: >>> _lib = np.ctypeslib.load_library('libmystuff', '.') #doctest: +SKIP Our result type, an ndarray that must be of type double, be 1-dimensional and is C-contiguous in memory: >>> array_1d_double = np.ctypeslib.ndpointer( ... dtype=np.double, ... ndim=1, flags='CONTIGUOUS') #doctest: +SKIP Our C-function typically takes an array and updates its values in-place. For example:: void foo_func(double* x, int length) { int i; for (i = 0; i < length; i++) { x[i] = i*i; } } We wrap it using: >>> _lib.foo_func.restype = None #doctest: +SKIP >>> _lib.foo_func.argtypes = [array_1d_double, c_int] #doctest: +SKIP Then, we're ready to call ``foo_func``: >>> out = np.empty(15, dtype=np.double) >>> _lib.foo_func(out, len(out)) #doctest: +SKIP """ __all__ = ['load_library', 'ndpointer', 'c_intp', 'as_ctypes', 'as_array', 'as_ctypes_type'] import os from numpy import ( integer, ndarray, dtype as _dtype, asarray, frombuffer ) from numpy.core.multiarray import _flagdict, flagsobj try: import ctypes except ImportError: ctypes = None if ctypes is None: def _dummy(*args, **kwds): """ Dummy object that raises an ImportError if ctypes is not available. Raises ------ ImportError If ctypes is not available. """ raise ImportError("ctypes is not available.") load_library = _dummy as_ctypes = _dummy as_array = _dummy from numpy import intp as c_intp _ndptr_base = object else: import numpy.core._internal as nic c_intp = nic._getintp_ctype() del nic _ndptr_base = ctypes.c_void_p # Adapted from Albert Strasheim def load_library(libname, loader_path): """ It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load the first library it finds with that name. NumPy supplies the load_library function as a convenience. .. versionchanged:: 1.20.0 Allow libname and loader_path to take any :term:`python:path-like object`. Parameters ---------- libname : path-like Name of the library, which can have 'lib' as a prefix, but without an extension. loader_path : path-like Where the library can be found. Returns ------- ctypes.cdll[libpath] : library object A ctypes library object Raises ------ OSError If there is no library with the expected extension, or the library is defective and cannot be loaded. """ # Convert path-like objects into strings libname = os.fsdecode(libname) loader_path = os.fsdecode(loader_path) ext = os.path.splitext(libname)[1] if not ext: import sys import sysconfig # Try to load library with platform-specific name, otherwise # default to libname.[so|dll|dylib]. Sometimes, these files are # built erroneously on non-linux platforms. base_ext = ".so" if sys.platform.startswith("darwin"): base_ext = ".dylib" elif sys.platform.startswith("win"): base_ext = ".dll" libname_ext = [libname + base_ext] so_ext = sysconfig.get_config_var("EXT_SUFFIX") if not so_ext == base_ext: libname_ext.insert(0, libname + so_ext) else: libname_ext = [libname] loader_path = os.path.abspath(loader_path) if not os.path.isdir(loader_path): libdir = os.path.dirname(loader_path) else: libdir = loader_path for ln in libname_ext: libpath = os.path.join(libdir, ln) if os.path.exists(libpath): try: return ctypes.cdll[libpath] except OSError: ## defective lib file raise ## if no successful return in the libname_ext loop: raise OSError("no file with expected extension") def _num_fromflags(flaglist): num = 0 for val in flaglist: num += _flagdict[val] return num _flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE', 'OWNDATA', 'WRITEBACKIFCOPY'] def _flags_fromnum(num): res = [] for key in _flagnames: value = _flagdict[key] if (num & value): res.append(key) return res class _ndptr(_ndptr_base): @classmethod def from_param(cls, obj): if not isinstance(obj, ndarray): raise TypeError("argument must be an ndarray") if cls._dtype_ is not None \ and obj.dtype != cls._dtype_: raise TypeError("array must have data type %s" % cls._dtype_) if cls._ndim_ is not None \ and obj.ndim != cls._ndim_: raise TypeError("array must have %d dimension(s)" % cls._ndim_) if cls._shape_ is not None \ and obj.shape != cls._shape_: raise TypeError("array must have shape %s" % str(cls._shape_)) if cls._flags_ is not None \ and ((obj.flags.num & cls._flags_) != cls._flags_): raise TypeError("array must have flags %s" % _flags_fromnum(cls._flags_)) return obj.ctypes class _concrete_ndptr(_ndptr): """ Like _ndptr, but with `_shape_` and `_dtype_` specified. Notably, this means the pointer has enough information to reconstruct the array, which is not generally true. """ def _check_retval_(self): """ This method is called when this class is used as the .restype attribute for a shared-library function, to automatically wrap the pointer into an array. """ return self.contents @property def contents(self): """ Get an ndarray viewing the data pointed to by this pointer. This mirrors the `contents` attribute of a normal ctypes pointer """ full_dtype = _dtype((self._dtype_, self._shape_)) full_ctype = ctypes.c_char * full_dtype.itemsize buffer = ctypes.cast(self, ctypes.POINTER(full_ctype)).contents return frombuffer(buffer, dtype=full_dtype).squeeze(axis=0) # Factory for an array-checking class with from_param defined for # use with ctypes argtypes mechanism _pointer_type_cache = {} def ndpointer(dtype=None, ndim=None, shape=None, flags=None): """ Array-checking restype/argtypes. An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach is more flexible than using, for example, ``POINTER(c_double)``, since several restrictions can be specified, which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and flags. If a given array does not satisfy the specified restrictions, a ``TypeError`` is raised. Parameters ---------- dtype : data-type, optional Array data-type. ndim : int, optional Number of array dimensions. shape : tuple of ints, optional Array shape. flags : str or tuple of str Array flags; may be one or more of: - C_CONTIGUOUS / C / CONTIGUOUS - F_CONTIGUOUS / F / FORTRAN - OWNDATA / O - WRITEABLE / W - ALIGNED / A - WRITEBACKIFCOPY / X Returns ------- klass : ndpointer type object A type object, which is an ``_ndtpr`` instance containing dtype, ndim, shape and flags information. Raises ------ TypeError If a given array does not satisfy the specified restrictions. Examples -------- >>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64, ... ndim=1, ... flags='C_CONTIGUOUS')] ... #doctest: +SKIP >>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64)) ... #doctest: +SKIP """ # normalize dtype to an Optional[dtype] if dtype is not None: dtype = _dtype(dtype) # normalize flags to an Optional[int] num = None if flags is not None: if isinstance(flags, str): flags = flags.split(',') elif isinstance(flags, (int, integer)): num = flags flags = _flags_fromnum(num) elif isinstance(flags, flagsobj): num = flags.num flags = _flags_fromnum(num) if num is None: try: flags = [x.strip().upper() for x in flags] except Exception as e: raise TypeError("invalid flags specification") from e num = _num_fromflags(flags) # normalize shape to an Optional[tuple] if shape is not None: try: shape = tuple(shape) except TypeError: # single integer -> 1-tuple shape = (shape,) cache_key = (dtype, ndim, shape, num) try: return _pointer_type_cache[cache_key] except KeyError: pass # produce a name for the new type if dtype is None: name = 'any' elif dtype.names is not None: name = str(id(dtype)) else: name = dtype.str if ndim is not None: name += "_%dd" % ndim if shape is not None: name += "_"+"x".join(str(x) for x in shape) if flags is not None: name += "_"+"_".join(flags) if dtype is not None and shape is not None: base = _concrete_ndptr else: base = _ndptr klass = type("ndpointer_%s"%name, (base,), {"_dtype_": dtype, "_shape_" : shape, "_ndim_" : ndim, "_flags_" : num}) _pointer_type_cache[cache_key] = klass return klass if ctypes is not None: def _ctype_ndarray(element_type, shape): """ Create an ndarray of the given element type and shape """ for dim in shape[::-1]: element_type = dim * element_type # prevent the type name include np.ctypeslib element_type.__module__ = None return element_type def _get_scalar_type_map(): """ Return a dictionary mapping native endian scalar dtype to ctypes types """ ct = ctypes simple_types = [ ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong, ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong, ct.c_float, ct.c_double, ct.c_bool, ] return {_dtype(ctype): ctype for ctype in simple_types} _scalar_type_map = _get_scalar_type_map() def _ctype_from_dtype_scalar(dtype): # swapping twice ensure that `=` is promoted to <, >, or | dtype_with_endian = dtype.newbyteorder('S').newbyteorder('S') dtype_native = dtype.newbyteorder('=') try: ctype = _scalar_type_map[dtype_native] except KeyError as e: raise NotImplementedError( "Converting {!r} to a ctypes type".format(dtype) ) from None if dtype_with_endian.byteorder == '>': ctype = ctype.__ctype_be__ elif dtype_with_endian.byteorder == '<': ctype = ctype.__ctype_le__ return ctype def _ctype_from_dtype_subarray(dtype): element_dtype, shape = dtype.subdtype ctype = _ctype_from_dtype(element_dtype) return _ctype_ndarray(ctype, shape) def _ctype_from_dtype_structured(dtype): # extract offsets of each field field_data = [] for name in dtype.names: field_dtype, offset = dtype.fields[name][:2] field_data.append((offset, name, _ctype_from_dtype(field_dtype))) # ctypes doesn't care about field order field_data = sorted(field_data, key=lambda f: f[0]) if len(field_data) > 1 and all(offset == 0 for offset, name, ctype in field_data): # union, if multiple fields all at address 0 size = 0 _fields_ = [] for offset, name, ctype in field_data: _fields_.append((name, ctype)) size = max(size, ctypes.sizeof(ctype)) # pad to the right size if dtype.itemsize != size: _fields_.append(('', ctypes.c_char * dtype.itemsize)) # we inserted manual padding, so always `_pack_` return type('union', (ctypes.Union,), dict( _fields_=_fields_, _pack_=1, __module__=None, )) else: last_offset = 0 _fields_ = [] for offset, name, ctype in field_data: padding = offset - last_offset if padding < 0: raise NotImplementedError("Overlapping fields") if padding > 0: _fields_.append(('', ctypes.c_char * padding)) _fields_.append((name, ctype)) last_offset = offset + ctypes.sizeof(ctype) padding = dtype.itemsize - last_offset if padding > 0: _fields_.append(('', ctypes.c_char * padding)) # we inserted manual padding, so always `_pack_` return type('struct', (ctypes.Structure,), dict( _fields_=_fields_, _pack_=1, __module__=None, )) def _ctype_from_dtype(dtype): if dtype.fields is not None: return _ctype_from_dtype_structured(dtype) elif dtype.subdtype is not None: return _ctype_from_dtype_subarray(dtype) else: return _ctype_from_dtype_scalar(dtype) def as_ctypes_type(dtype): r""" Convert a dtype into a ctypes type. Parameters ---------- dtype : dtype The dtype to convert Returns ------- ctype A ctype scalar, union, array, or struct Raises ------ NotImplementedError If the conversion is not possible Notes ----- This function does not losslessly round-trip in either direction. ``np.dtype(as_ctypes_type(dt))`` will: - insert padding fields - reorder fields to be sorted by offset - discard field titles ``as_ctypes_type(np.dtype(ctype))`` will: - discard the class names of `ctypes.Structure`\ s and `ctypes.Union`\ s - convert single-element `ctypes.Union`\ s into single-element `ctypes.Structure`\ s - insert padding fields """ return _ctype_from_dtype(_dtype(dtype)) def as_array(obj, shape=None): """ Create a numpy array from a ctypes array or POINTER. The numpy array shares the memory with the ctypes object. The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if converting from a ctypes array """ if isinstance(obj, ctypes._Pointer): # convert pointers to an array of the desired shape if shape is None: raise TypeError( 'as_array() requires a shape argument when called on a ' 'pointer') p_arr_type = ctypes.POINTER(_ctype_ndarray(obj._type_, shape)) obj = ctypes.cast(obj, p_arr_type).contents return asarray(obj) def as_ctypes(obj): """Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__ is accepted.""" ai = obj.__array_interface__ if ai["strides"]: raise TypeError("strided arrays not supported") if ai["version"] != 3: raise TypeError("only __array_interface__ version 3 supported") addr, readonly = ai["data"] if readonly: raise TypeError("readonly arrays unsupported") # can't use `_dtype((ai["typestr"], ai["shape"]))` here, as it overflows # dtype.itemsize (gh-14214) ctype_scalar = as_ctypes_type(ai["typestr"]) result_type = _ctype_ndarray(ctype_scalar, ai["shape"]) result = result_type.from_address(addr) result.__keep = obj return result