/
opt
/
alt
/
python37
/
lib64
/
python3.7
/
site-packages
/
numpy
/
Upload Filee
HOME
""" ============================ ``ctypes`` Utility Functions ============================ See Also --------- load_library : Load a C library. ndpointer : Array restype/argtype with verification. as_ctypes : Create a ctypes array from an ndarray. as_array : Create an ndarray from a ctypes array. References ---------- .. [1] "SciPy Cookbook: ctypes", http://www.scipy.org/Cookbook/Ctypes Examples -------- Load the C library: >>> _lib = np.ctypeslib.load_library('libmystuff', '.') #doctest: +SKIP Our result type, an ndarray that must be of type double, be 1-dimensional and is C-contiguous in memory: >>> array_1d_double = np.ctypeslib.ndpointer( ... dtype=np.double, ... ndim=1, flags='CONTIGUOUS') #doctest: +SKIP Our C-function typically takes an array and updates its values in-place. For example:: void foo_func(double* x, int length) { int i; for (i = 0; i < length; i++) { x[i] = i*i; } } We wrap it using: >>> _lib.foo_func.restype = None #doctest: +SKIP >>> _lib.foo_func.argtypes = [array_1d_double, c_int] #doctest: +SKIP Then, we're ready to call ``foo_func``: >>> out = np.empty(15, dtype=np.double) >>> _lib.foo_func(out, len(out)) #doctest: +SKIP """ from __future__ import division, absolute_import, print_function __all__ = ['load_library', 'ndpointer', 'test', 'ctypes_load_library', 'c_intp', 'as_ctypes', 'as_array'] import sys, os from numpy import integer, ndarray, dtype as _dtype, deprecate, array from numpy.core.multiarray import _flagdict, flagsobj try: import ctypes except ImportError: ctypes = None if ctypes is None: def _dummy(*args, **kwds): """ Dummy object that raises an ImportError if ctypes is not available. Raises ------ ImportError If ctypes is not available. """ raise ImportError("ctypes is not available.") ctypes_load_library = _dummy load_library = _dummy as_ctypes = _dummy as_array = _dummy from numpy import intp as c_intp _ndptr_base = object else: import numpy.core._internal as nic c_intp = nic._getintp_ctype() del nic _ndptr_base = ctypes.c_void_p # Adapted from Albert Strasheim def load_library(libname, loader_path): """ It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>] But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load the first library it finds with that name. NumPy supplies the load_library function as a convenience. Parameters ---------- libname : str Name of the library, which can have 'lib' as a prefix, but without an extension. loader_path : str Where the library can be found. Returns ------- ctypes.cdll[libpath] : library object A ctypes library object Raises ------ OSError If there is no library with the expected extension, or the library is defective and cannot be loaded. """ if ctypes.__version__ < '1.0.1': import warnings warnings.warn("All features of ctypes interface may not work " \ "with ctypes < 1.0.1", stacklevel=2) ext = os.path.splitext(libname)[1] if not ext: # Try to load library with platform-specific name, otherwise # default to libname.[so|pyd]. Sometimes, these files are built # erroneously on non-linux platforms. from numpy.distutils.misc_util import get_shared_lib_extension so_ext = get_shared_lib_extension() libname_ext = [libname + so_ext] # mac, windows and linux >= py3.2 shared library and loadable # module have different extensions so try both so_ext2 = get_shared_lib_extension(is_python_ext=True) if not so_ext2 == so_ext: libname_ext.insert(0, libname + so_ext2) else: libname_ext = [libname] loader_path = os.path.abspath(loader_path) if not os.path.isdir(loader_path): libdir = os.path.dirname(loader_path) else: libdir = loader_path for ln in libname_ext: libpath = os.path.join(libdir, ln) if os.path.exists(libpath): try: return ctypes.cdll[libpath] except OSError: ## defective lib file raise ## if no successful return in the libname_ext loop: raise OSError("no file with expected extension") ctypes_load_library = deprecate(load_library, 'ctypes_load_library', 'load_library') def _num_fromflags(flaglist): num = 0 for val in flaglist: num += _flagdict[val] return num _flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE', 'OWNDATA', 'UPDATEIFCOPY'] def _flags_fromnum(num): res = [] for key in _flagnames: value = _flagdict[key] if (num & value): res.append(key) return res class _ndptr(_ndptr_base): def _check_retval_(self): """This method is called when this class is used as the .restype attribute for a shared-library function. It constructs a numpy array from a void pointer.""" return array(self) @property def __array_interface__(self): return {'descr': self._dtype_.descr, '__ref': self, 'strides': None, 'shape': self._shape_, 'version': 3, 'typestr': self._dtype_.descr[0][1], 'data': (self.value, False), } @classmethod def from_param(cls, obj): if not isinstance(obj, ndarray): raise TypeError("argument must be an ndarray") if cls._dtype_ is not None \ and obj.dtype != cls._dtype_: raise TypeError("array must have data type %s" % cls._dtype_) if cls._ndim_ is not None \ and obj.ndim != cls._ndim_: raise TypeError("array must have %d dimension(s)" % cls._ndim_) if cls._shape_ is not None \ and obj.shape != cls._shape_: raise TypeError("array must have shape %s" % str(cls._shape_)) if cls._flags_ is not None \ and ((obj.flags.num & cls._flags_) != cls._flags_): raise TypeError("array must have flags %s" % _flags_fromnum(cls._flags_)) return obj.ctypes # Factory for an array-checking class with from_param defined for # use with ctypes argtypes mechanism _pointer_type_cache = {} def ndpointer(dtype=None, ndim=None, shape=None, flags=None): """ Array-checking restype/argtypes. An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach is more flexible than using, for example, ``POINTER(c_double)``, since several restrictions can be specified, which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and flags. If a given array does not satisfy the specified restrictions, a ``TypeError`` is raised. Parameters ---------- dtype : data-type, optional Array data-type. ndim : int, optional Number of array dimensions. shape : tuple of ints, optional Array shape. flags : str or tuple of str Array flags; may be one or more of: - C_CONTIGUOUS / C / CONTIGUOUS - F_CONTIGUOUS / F / FORTRAN - OWNDATA / O - WRITEABLE / W - ALIGNED / A - UPDATEIFCOPY / U Returns ------- klass : ndpointer type object A type object, which is an ``_ndtpr`` instance containing dtype, ndim, shape and flags information. Raises ------ TypeError If a given array does not satisfy the specified restrictions. Examples -------- >>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64, ... ndim=1, ... flags='C_CONTIGUOUS')] ... #doctest: +SKIP >>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64)) ... #doctest: +SKIP """ if dtype is not None: dtype = _dtype(dtype) num = None if flags is not None: if isinstance(flags, str): flags = flags.split(',') elif isinstance(flags, (int, integer)): num = flags flags = _flags_fromnum(num) elif isinstance(flags, flagsobj): num = flags.num flags = _flags_fromnum(num) if num is None: try: flags = [x.strip().upper() for x in flags] except: raise TypeError("invalid flags specification") num = _num_fromflags(flags) try: return _pointer_type_cache[(dtype, ndim, shape, num)] except KeyError: pass if dtype is None: name = 'any' elif dtype.names: name = str(id(dtype)) else: name = dtype.str if ndim is not None: name += "_%dd" % ndim if shape is not None: try: strshape = [str(x) for x in shape] except TypeError: strshape = [str(shape)] shape = (shape,) shape = tuple(shape) name += "_"+"x".join(strshape) if flags is not None: name += "_"+"_".join(flags) else: flags = [] klass = type("ndpointer_%s"%name, (_ndptr,), {"_dtype_": dtype, "_shape_" : shape, "_ndim_" : ndim, "_flags_" : num}) _pointer_type_cache[(dtype, shape, ndim, num)] = klass return klass if ctypes is not None: ct = ctypes ################################################################ # simple types # maps the numpy typecodes like '<f8' to simple ctypes types like # c_double. Filled in by prep_simple. _typecodes = {} def prep_simple(simple_type, dtype): """Given a ctypes simple type, construct and attach an __array_interface__ property to it if it does not yet have one. """ try: simple_type.__array_interface__ except AttributeError: pass else: return typestr = _dtype(dtype).str _typecodes[typestr] = simple_type def __array_interface__(self): return {'descr': [('', typestr)], '__ref': self, 'strides': None, 'shape': (), 'version': 3, 'typestr': typestr, 'data': (ct.addressof(self), False), } simple_type.__array_interface__ = property(__array_interface__) simple_types = [ ((ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong), "i"), ((ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong), "u"), ((ct.c_float, ct.c_double), "f"), ] # Prep that numerical ctypes types: for types, code in simple_types: for tp in types: prep_simple(tp, "%c%d" % (code, ct.sizeof(tp))) ################################################################ # array types _ARRAY_TYPE = type(ct.c_int * 1) def prep_array(array_type): """Given a ctypes array type, construct and attach an __array_interface__ property to it if it does not yet have one. """ try: array_type.__array_interface__ except AttributeError: pass else: return shape = [] ob = array_type while type(ob) is _ARRAY_TYPE: shape.append(ob._length_) ob = ob._type_ shape = tuple(shape) ai = ob().__array_interface__ descr = ai['descr'] typestr = ai['typestr'] def __array_interface__(self): return {'descr': descr, '__ref': self, 'strides': None, 'shape': shape, 'version': 3, 'typestr': typestr, 'data': (ct.addressof(self), False), } array_type.__array_interface__ = property(__array_interface__) def prep_pointer(pointer_obj, shape): """Given a ctypes pointer object, construct and attach an __array_interface__ property to it if it does not yet have one. """ try: pointer_obj.__array_interface__ except AttributeError: pass else: return contents = pointer_obj.contents dtype = _dtype(type(contents)) inter = {'version': 3, 'typestr': dtype.str, 'data': (ct.addressof(contents), False), 'shape': shape} pointer_obj.__array_interface__ = inter ################################################################ # public functions def as_array(obj, shape=None): """Create a numpy array from a ctypes array or a ctypes POINTER. The numpy array shares the memory with the ctypes object. The size parameter must be given if converting from a ctypes POINTER. The size parameter is ignored if converting from a ctypes array """ tp = type(obj) try: tp.__array_interface__ except AttributeError: if hasattr(obj, 'contents'): prep_pointer(obj, shape) else: prep_array(tp) return array(obj, copy=False) def as_ctypes(obj): """Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__ is accepted.""" ai = obj.__array_interface__ if ai["strides"]: raise TypeError("strided arrays not supported") if ai["version"] != 3: raise TypeError("only __array_interface__ version 3 supported") addr, readonly = ai["data"] if readonly: raise TypeError("readonly arrays unsupported") tp = _typecodes[ai["typestr"]] for dim in ai["shape"][::-1]: tp = tp * dim result = tp.from_address(addr) result.__keep = ai return result