/
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
numpy
/
core
/
Upload Filee
HOME
""" A place for internal code Some things are more easily handled Python. """ import ast import re import sys import warnings from ..exceptions import DTypePromotionError from .multiarray import dtype, array, ndarray, promote_types try: import ctypes except ImportError: ctypes = None IS_PYPY = sys.implementation.name == 'pypy' if sys.byteorder == 'little': _nbo = '<' else: _nbo = '>' def _makenames_list(adict, align): allfields = [] for fname, obj in adict.items(): n = len(obj) if not isinstance(obj, tuple) or n not in (2, 3): raise ValueError("entry not a 2- or 3- tuple") if n > 2 and obj[2] == fname: continue num = int(obj[1]) if num < 0: raise ValueError("invalid offset.") format = dtype(obj[0], align=align) if n > 2: title = obj[2] else: title = None allfields.append((fname, format, num, title)) # sort by offsets allfields.sort(key=lambda x: x[2]) names = [x[0] for x in allfields] formats = [x[1] for x in allfields] offsets = [x[2] for x in allfields] titles = [x[3] for x in allfields] return names, formats, offsets, titles # Called in PyArray_DescrConverter function when # a dictionary without "names" and "formats" # fields is used as a data-type descriptor. def _usefields(adict, align): try: names = adict[-1] except KeyError: names = None if names is None: names, formats, offsets, titles = _makenames_list(adict, align) else: formats = [] offsets = [] titles = [] for name in names: res = adict[name] formats.append(res[0]) offsets.append(res[1]) if len(res) > 2: titles.append(res[2]) else: titles.append(None) return dtype({"names": names, "formats": formats, "offsets": offsets, "titles": titles}, align) # construct an array_protocol descriptor list # from the fields attribute of a descriptor # This calls itself recursively but should eventually hit # a descriptor that has no fields and then return # a simple typestring def _array_descr(descriptor): fields = descriptor.fields if fields is None: subdtype = descriptor.subdtype if subdtype is None: if descriptor.metadata is None: return descriptor.str else: new = descriptor.metadata.copy() if new: return (descriptor.str, new) else: return descriptor.str else: return (_array_descr(subdtype[0]), subdtype[1]) names = descriptor.names ordered_fields = [fields[x] + (x,) for x in names] result = [] offset = 0 for field in ordered_fields: if field[1] > offset: num = field[1] - offset result.append(('', f'|V{num}')) offset += num elif field[1] < offset: raise ValueError( "dtype.descr is not defined for types with overlapping or " "out-of-order fields") if len(field) > 3: name = (field[2], field[3]) else: name = field[2] if field[0].subdtype: tup = (name, _array_descr(field[0].subdtype[0]), field[0].subdtype[1]) else: tup = (name, _array_descr(field[0])) offset += field[0].itemsize result.append(tup) if descriptor.itemsize > offset: num = descriptor.itemsize - offset result.append(('', f'|V{num}')) return result # Build a new array from the information in a pickle. # Note that the name numpy.core._internal._reconstruct is embedded in # pickles of ndarrays made with NumPy before release 1.0 # so don't remove the name here, or you'll # break backward compatibility. def _reconstruct(subtype, shape, dtype): return ndarray.__new__(subtype, shape, dtype) # format_re was originally from numarray by J. Todd Miller format_re = re.compile(r'(?P<order1>[<>|=]?)' r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)' r'(?P<order2>[<>|=]?)' r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)') sep_re = re.compile(r'\s*,\s*') space_re = re.compile(r'\s+$') # astr is a string (perhaps comma separated) _convorder = {'=': _nbo} def _commastring(astr): startindex = 0 result = [] while startindex < len(astr): mo = format_re.match(astr, pos=startindex) try: (order1, repeats, order2, dtype) = mo.groups() except (TypeError, AttributeError): raise ValueError( f'format number {len(result)+1} of "{astr}" is not recognized' ) from None startindex = mo.end() # Separator or ending padding if startindex < len(astr): if space_re.match(astr, pos=startindex): startindex = len(astr) else: mo = sep_re.match(astr, pos=startindex) if not mo: raise ValueError( 'format number %d of "%s" is not recognized' % (len(result)+1, astr)) startindex = mo.end() if order2 == '': order = order1 elif order1 == '': order = order2 else: order1 = _convorder.get(order1, order1) order2 = _convorder.get(order2, order2) if (order1 != order2): raise ValueError( 'inconsistent byte-order specification %s and %s' % (order1, order2)) order = order1 if order in ('|', '=', _nbo): order = '' dtype = order + dtype if (repeats == ''): newitem = dtype else: newitem = (dtype, ast.literal_eval(repeats)) result.append(newitem) return result class dummy_ctype: def __init__(self, cls): self._cls = cls def __mul__(self, other): return self def __call__(self, *other): return self._cls(other) def __eq__(self, other): return self._cls == other._cls def __ne__(self, other): return self._cls != other._cls def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if char == 'i': val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val _getintp_ctype.cache = None # Used for .ctypes attribute of ndarray class _missing_ctypes: def cast(self, num, obj): return num.value class c_void_p: def __init__(self, ptr): self.value = ptr class _ctypes: def __init__(self, array, ptr=None): self._arr = array if ctypes: self._ctypes = ctypes self._data = self._ctypes.c_void_p(ptr) else: # fake a pointer-like object that holds onto the reference self._ctypes = _missing_ctypes() self._data = self._ctypes.c_void_p(ptr) self._data._objects = array if self._arr.ndim == 0: self._zerod = True else: self._zerod = False def data_as(self, obj): """ Return the data pointer cast to a particular c-types object. For example, calling ``self._as_parameter_`` is equivalent to ``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: ``self.data_as(ctypes.POINTER(ctypes.c_double))``. The returned pointer will keep a reference to the array. """ # _ctypes.cast function causes a circular reference of self._data in # self._data._objects. Attributes of self._data cannot be released # until gc.collect is called. Make a copy of the pointer first then let # it hold the array reference. This is a workaround to circumvent the # CPython bug https://bugs.python.org/issue12836 ptr = self._ctypes.cast(self._data, obj) ptr._arr = self._arr return ptr def shape_as(self, obj): """ Return the shape tuple as an array of some other c-types type. For example: ``self.shape_as(ctypes.c_short)``. """ if self._zerod: return None return (obj*self._arr.ndim)(*self._arr.shape) def strides_as(self, obj): """ Return the strides tuple as an array of some other c-types type. For example: ``self.strides_as(ctypes.c_longlong)``. """ if self._zerod: return None return (obj*self._arr.ndim)(*self._arr.strides) @property def data(self): """ A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as ``self._array_interface_['data'][0]``. Note that unlike ``data_as``, a reference will not be kept to the array: code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a pointer to a deallocated array, and should be spelt ``(a + b).ctypes.data_as(ctypes.c_void_p)`` """ return self._data.value @property def shape(self): """ (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding to ``dtype('p')`` on this platform (see `~numpy.ctypeslib.c_intp`). This base-type could be `ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on the platform. The ctypes array contains the shape of the underlying array. """ return self.shape_as(_getintp_ctype()) @property def strides(self): """ (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array. """ return self.strides_as(_getintp_ctype()) @property def _as_parameter_(self): """ Overrides the ctypes semi-magic method Enables `c_func(some_array.ctypes)` """ return self.data_as(ctypes.c_void_p) # Numpy 1.21.0, 2021-05-18 def get_data(self): """Deprecated getter for the `_ctypes.data` property. .. deprecated:: 1.21 """ warnings.warn('"get_data" is deprecated. Use "data" instead', DeprecationWarning, stacklevel=2) return self.data def get_shape(self): """Deprecated getter for the `_ctypes.shape` property. .. deprecated:: 1.21 """ warnings.warn('"get_shape" is deprecated. Use "shape" instead', DeprecationWarning, stacklevel=2) return self.shape def get_strides(self): """Deprecated getter for the `_ctypes.strides` property. .. deprecated:: 1.21 """ warnings.warn('"get_strides" is deprecated. Use "strides" instead', DeprecationWarning, stacklevel=2) return self.strides def get_as_parameter(self): """Deprecated getter for the `_ctypes._as_parameter_` property. .. deprecated:: 1.21 """ warnings.warn( '"get_as_parameter" is deprecated. Use "_as_parameter_" instead', DeprecationWarning, stacklevel=2, ) return self._as_parameter_ def _newnames(datatype, order): """ Given a datatype and an order object, return a new names tuple, with the order indicated """ oldnames = datatype.names nameslist = list(oldnames) if isinstance(order, str): order = [order] seen = set() if isinstance(order, (list, tuple)): for name in order: try: nameslist.remove(name) except ValueError: if name in seen: raise ValueError(f"duplicate field name: {name}") from None else: raise ValueError(f"unknown field name: {name}") from None seen.add(name) return tuple(list(order) + nameslist) raise ValueError(f"unsupported order value: {order}") def _copy_fields(ary): """Return copy of structured array with padding between fields removed. Parameters ---------- ary : ndarray Structured array from which to remove padding bytes Returns ------- ary_copy : ndarray Copy of ary with padding bytes removed """ dt = ary.dtype copy_dtype = {'names': dt.names, 'formats': [dt.fields[name][0] for name in dt.names]} return array(ary, dtype=copy_dtype, copy=True) def _promote_fields(dt1, dt2): """ Perform type promotion for two structured dtypes. Parameters ---------- dt1 : structured dtype First dtype. dt2 : structured dtype Second dtype. Returns ------- out : dtype The promoted dtype Notes ----- If one of the inputs is aligned, the result will be. The titles of both descriptors must match (point to the same field). """ # Both must be structured and have the same names in the same order if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names: raise DTypePromotionError( f"field names `{dt1.names}` and `{dt2.names}` mismatch.") # if both are identical, we can (maybe!) just return the same dtype. identical = dt1 is dt2 new_fields = [] for name in dt1.names: field1 = dt1.fields[name] field2 = dt2.fields[name] new_descr = promote_types(field1[0], field2[0]) identical = identical and new_descr is field1[0] # Check that the titles match (if given): if field1[2:] != field2[2:]: raise DTypePromotionError( f"field titles of field '{name}' mismatch") if len(field1) == 2: new_fields.append((name, new_descr)) else: new_fields.append(((field1[2], name), new_descr)) res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct) # Might as well preserve identity (and metadata) if the dtype is identical # and the itemsize, offsets are also unmodified. This could probably be # sped up, but also probably just be removed entirely. if identical and res.itemsize == dt1.itemsize: for name in dt1.names: if dt1.fields[name][1] != res.fields[name][1]: return res # the dtype changed. return dt1 return res def _getfield_is_safe(oldtype, newtype, offset): """ Checks safety of getfield for object arrays. As in _view_is_safe, we need to check that memory containing objects is not reinterpreted as a non-object datatype and vice versa. Parameters ---------- oldtype : data-type Data type of the original ndarray. newtype : data-type Data type of the field being accessed by ndarray.getfield offset : int Offset of the field being accessed by ndarray.getfield Raises ------ TypeError If the field access is invalid """ if newtype.hasobject or oldtype.hasobject: if offset == 0 and newtype == oldtype: return if oldtype.names is not None: for name in oldtype.names: if (oldtype.fields[name][1] == offset and oldtype.fields[name][0] == newtype): return raise TypeError("Cannot get/set field of an object array") return def _view_is_safe(oldtype, newtype): """ Checks safety of a view involving object arrays, for example when doing:: np.zeros(10, dtype=oldtype).view(newtype) Parameters ---------- oldtype : data-type Data type of original ndarray newtype : data-type Data type of the view Raises ------ TypeError If the new type is incompatible with the old type. """ # if the types are equivalent, there is no problem. # for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4')) if oldtype == newtype: return if newtype.hasobject or oldtype.hasobject: raise TypeError("Cannot change data-type for object array.") return # Given a string containing a PEP 3118 format specifier, # construct a NumPy dtype _pep3118_native_map = { '?': '?', 'c': 'S1', 'b': 'b', 'B': 'B', 'h': 'h', 'H': 'H', 'i': 'i', 'I': 'I', 'l': 'l', 'L': 'L', 'q': 'q', 'Q': 'Q', 'e': 'e', 'f': 'f', 'd': 'd', 'g': 'g', 'Zf': 'F', 'Zd': 'D', 'Zg': 'G', 's': 'S', 'w': 'U', 'O': 'O', 'x': 'V', # padding } _pep3118_native_typechars = ''.join(_pep3118_native_map.keys()) _pep3118_standard_map = { '?': '?', 'c': 'S1', 'b': 'b', 'B': 'B', 'h': 'i2', 'H': 'u2', 'i': 'i4', 'I': 'u4', 'l': 'i4', 'L': 'u4', 'q': 'i8', 'Q': 'u8', 'e': 'f2', 'f': 'f', 'd': 'd', 'Zf': 'F', 'Zd': 'D', 's': 'S', 'w': 'U', 'O': 'O', 'x': 'V', # padding } _pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys()) _pep3118_unsupported_map = { 'u': 'UCS-2 strings', '&': 'pointers', 't': 'bitfields', 'X': 'function pointers', } class _Stream: def __init__(self, s): self.s = s self.byteorder = '@' def advance(self, n): res = self.s[:n] self.s = self.s[n:] return res def consume(self, c): if self.s[:len(c)] == c: self.advance(len(c)) return True return False def consume_until(self, c): if callable(c): i = 0 while i < len(self.s) and not c(self.s[i]): i = i + 1 return self.advance(i) else: i = self.s.index(c) res = self.advance(i) self.advance(len(c)) return res @property def next(self): return self.s[0] def __bool__(self): return bool(self.s) def _dtype_from_pep3118(spec): stream = _Stream(spec) dtype, align = __dtype_from_pep3118(stream, is_subdtype=False) return dtype def __dtype_from_pep3118(stream, is_subdtype): field_spec = dict( names=[], formats=[], offsets=[], itemsize=0 ) offset = 0 common_alignment = 1 is_padding = False # Parse spec while stream: value = None # End of structure, bail out to upper level if stream.consume('}'): break # Sub-arrays (1) shape = None if stream.consume('('): shape = stream.consume_until(')') shape = tuple(map(int, shape.split(','))) # Byte order if stream.next in ('@', '=', '<', '>', '^', '!'): byteorder = stream.advance(1) if byteorder == '!': byteorder = '>' stream.byteorder = byteorder # Byte order characters also control native vs. standard type sizes if stream.byteorder in ('@', '^'): type_map = _pep3118_native_map type_map_chars = _pep3118_native_typechars else: type_map = _pep3118_standard_map type_map_chars = _pep3118_standard_typechars # Item sizes itemsize_str = stream.consume_until(lambda c: not c.isdigit()) if itemsize_str: itemsize = int(itemsize_str) else: itemsize = 1 # Data types is_padding = False if stream.consume('T{'): value, align = __dtype_from_pep3118( stream, is_subdtype=True) elif stream.next in type_map_chars: if stream.next == 'Z': typechar = stream.advance(2) else: typechar = stream.advance(1) is_padding = (typechar == 'x') dtypechar = type_map[typechar] if dtypechar in 'USV': dtypechar += '%d' % itemsize itemsize = 1 numpy_byteorder = {'@': '=', '^': '='}.get( stream.byteorder, stream.byteorder) value = dtype(numpy_byteorder + dtypechar) align = value.alignment elif stream.next in _pep3118_unsupported_map: desc = _pep3118_unsupported_map[stream.next] raise NotImplementedError( "Unrepresentable PEP 3118 data type {!r} ({})" .format(stream.next, desc)) else: raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s) # # Native alignment may require padding # # Here we assume that the presence of a '@' character implicitly implies # that the start of the array is *already* aligned. # extra_offset = 0 if stream.byteorder == '@': start_padding = (-offset) % align intra_padding = (-value.itemsize) % align offset += start_padding if intra_padding != 0: if itemsize > 1 or (shape is not None and _prod(shape) > 1): # Inject internal padding to the end of the sub-item value = _add_trailing_padding(value, intra_padding) else: # We can postpone the injection of internal padding, # as the item appears at most once extra_offset += intra_padding # Update common alignment common_alignment = _lcm(align, common_alignment) # Convert itemsize to sub-array if itemsize != 1: value = dtype((value, (itemsize,))) # Sub-arrays (2) if shape is not None: value = dtype((value, shape)) # Field name if stream.consume(':'): name = stream.consume_until(':') else: name = None if not (is_padding and name is None): if name is not None and name in field_spec['names']: raise RuntimeError(f"Duplicate field name '{name}' in PEP3118 format") field_spec['names'].append(name) field_spec['formats'].append(value) field_spec['offsets'].append(offset) offset += value.itemsize offset += extra_offset field_spec['itemsize'] = offset # extra final padding for aligned types if stream.byteorder == '@': field_spec['itemsize'] += (-offset) % common_alignment # Check if this was a simple 1-item type, and unwrap it if (field_spec['names'] == [None] and field_spec['offsets'][0] == 0 and field_spec['itemsize'] == field_spec['formats'][0].itemsize and not is_subdtype): ret = field_spec['formats'][0] else: _fix_names(field_spec) ret = dtype(field_spec) # Finished return ret, common_alignment def _fix_names(field_spec): """ Replace names which are None with the next unused f%d name """ names = field_spec['names'] for i, name in enumerate(names): if name is not None: continue j = 0 while True: name = f'f{j}' if name not in names: break j = j + 1 names[i] = name def _add_trailing_padding(value, padding): """Inject the specified number of padding bytes at the end of a dtype""" if value.fields is None: field_spec = dict( names=['f0'], formats=[value], offsets=[0], itemsize=value.itemsize ) else: fields = value.fields names = value.names field_spec = dict( names=names, formats=[fields[name][0] for name in names], offsets=[fields[name][1] for name in names], itemsize=value.itemsize ) field_spec['itemsize'] += padding return dtype(field_spec) def _prod(a): p = 1 for x in a: p *= x return p def _gcd(a, b): """Calculate the greatest common divisor of a and b""" while b: a, b = b, a % b return a def _lcm(a, b): return a // _gcd(a, b) * b def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs): """ Format the error message for when __array_ufunc__ gives up. """ args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] + ['{}={!r}'.format(k, v) for k, v in kwargs.items()]) args = inputs + kwargs.get('out', ()) types_string = ', '.join(repr(type(arg).__name__) for arg in args) return ('operand type(s) all returned NotImplemented from ' '__array_ufunc__({!r}, {!r}, {}): {}' .format(ufunc, method, args_string, types_string)) def array_function_errmsg_formatter(public_api, types): """ Format the error message for when __array_ufunc__ gives up. """ func_name = '{}.{}'.format(public_api.__module__, public_api.__name__) return ("no implementation found for '{}' on types that implement " '__array_function__: {}'.format(func_name, list(types))) def _ufunc_doc_signature_formatter(ufunc): """ Builds a signature string which resembles PEP 457 This is used to construct the first line of the docstring """ # input arguments are simple if ufunc.nin == 1: in_args = 'x' else: in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin)) # output arguments are both keyword or positional if ufunc.nout == 0: out_args = ', /, out=()' elif ufunc.nout == 1: out_args = ', /, out=None' else: out_args = '[, {positional}], / [, out={default}]'.format( positional=', '.join( 'out{}'.format(i+1) for i in range(ufunc.nout)), default=repr((None,)*ufunc.nout) ) # keyword only args depend on whether this is a gufunc kwargs = ( ", casting='same_kind'" ", order='K'" ", dtype=None" ", subok=True" ) # NOTE: gufuncs may or may not support the `axis` parameter if ufunc.signature is None: kwargs = f", where=True{kwargs}[, signature, extobj]" else: kwargs += "[, signature, extobj, axes, axis]" # join all the parts together return '{name}({in_args}{out_args}, *{kwargs})'.format( name=ufunc.__name__, in_args=in_args, out_args=out_args, kwargs=kwargs ) def npy_ctypes_check(cls): # determine if a class comes from ctypes, in order to work around # a bug in the buffer protocol for those objects, bpo-10746 try: # ctypes class are new-style, so have an __mro__. This probably fails # for ctypes classes with multiple inheritance. if IS_PYPY: # (..., _ctypes.basics._CData, Bufferable, object) ctype_base = cls.__mro__[-3] else: # # (..., _ctypes._CData, object) ctype_base = cls.__mro__[-2] # right now, they're part of the _ctypes module return '_ctypes' in ctype_base.__module__ except Exception: return False