/
opt
/
alt
/
python37
/
lib64
/
python3.7
/
site-packages
/
numpy
/
core
/
Upload Filee
HOME
""" A place for code to be called from core C-code. Some things are more easily handled Python. """ from __future__ import division, absolute_import, print_function import re import sys from numpy.compat import basestring from .multiarray import dtype, array, ndarray try: import ctypes except ImportError: ctypes = None from .numerictypes import object_ if (sys.byteorder == 'little'): _nbo = b'<' else: _nbo = b'>' def _makenames_list(adict, align): allfields = [] fnames = list(adict.keys()) for fname in fnames: obj = adict[fname] n = len(obj) if not isinstance(obj, tuple) or n not in [2, 3]: raise ValueError("entry not a 2- or 3- tuple") if (n > 2) and (obj[2] == fname): continue num = int(obj[1]) if (num < 0): raise ValueError("invalid offset.") format = dtype(obj[0], align=align) if (n > 2): title = obj[2] else: title = None allfields.append((fname, format, num, title)) # sort by offsets allfields.sort(key=lambda x: x[2]) names = [x[0] for x in allfields] formats = [x[1] for x in allfields] offsets = [x[2] for x in allfields] titles = [x[3] for x in allfields] return names, formats, offsets, titles # Called in PyArray_DescrConverter function when # a dictionary without "names" and "formats" # fields is used as a data-type descriptor. def _usefields(adict, align): try: names = adict[-1] except KeyError: names = None if names is None: names, formats, offsets, titles = _makenames_list(adict, align) else: formats = [] offsets = [] titles = [] for name in names: res = adict[name] formats.append(res[0]) offsets.append(res[1]) if (len(res) > 2): titles.append(res[2]) else: titles.append(None) return dtype({"names": names, "formats": formats, "offsets": offsets, "titles": titles}, align) # construct an array_protocol descriptor list # from the fields attribute of a descriptor # This calls itself recursively but should eventually hit # a descriptor that has no fields and then return # a simple typestring def _array_descr(descriptor): fields = descriptor.fields if fields is None: subdtype = descriptor.subdtype if subdtype is None: if descriptor.metadata is None: return descriptor.str else: new = descriptor.metadata.copy() if new: return (descriptor.str, new) else: return descriptor.str else: return (_array_descr(subdtype[0]), subdtype[1]) names = descriptor.names ordered_fields = [fields[x] + (x,) for x in names] result = [] offset = 0 for field in ordered_fields: if field[1] > offset: num = field[1] - offset result.append(('', '|V%d' % num)) offset += num if len(field) > 3: name = (field[2], field[3]) else: name = field[2] if field[0].subdtype: tup = (name, _array_descr(field[0].subdtype[0]), field[0].subdtype[1]) else: tup = (name, _array_descr(field[0])) offset += field[0].itemsize result.append(tup) if descriptor.itemsize > offset: num = descriptor.itemsize - offset result.append(('', '|V%d' % num)) return result # Build a new array from the information in a pickle. # Note that the name numpy.core._internal._reconstruct is embedded in # pickles of ndarrays made with NumPy before release 1.0 # so don't remove the name here, or you'll # break backward compatibility. def _reconstruct(subtype, shape, dtype): return ndarray.__new__(subtype, shape, dtype) # format_re was originally from numarray by J. Todd Miller format_re = re.compile(br'(?P<order1>[<>|=]?)' br'(?P<repeats> *[(]?[ ,0-9L]*[)]? *)' br'(?P<order2>[<>|=]?)' br'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)') sep_re = re.compile(br'\s*,\s*') space_re = re.compile(br'\s+$') # astr is a string (perhaps comma separated) _convorder = {b'=': _nbo} def _commastring(astr): startindex = 0 result = [] while startindex < len(astr): mo = format_re.match(astr, pos=startindex) try: (order1, repeats, order2, dtype) = mo.groups() except (TypeError, AttributeError): raise ValueError('format number %d of "%s" is not recognized' % (len(result)+1, astr)) startindex = mo.end() # Separator or ending padding if startindex < len(astr): if space_re.match(astr, pos=startindex): startindex = len(astr) else: mo = sep_re.match(astr, pos=startindex) if not mo: raise ValueError( 'format number %d of "%s" is not recognized' % (len(result)+1, astr)) startindex = mo.end() if order2 == b'': order = order1 elif order1 == b'': order = order2 else: order1 = _convorder.get(order1, order1) order2 = _convorder.get(order2, order2) if (order1 != order2): raise ValueError( 'inconsistent byte-order specification %s and %s' % (order1, order2)) order = order1 if order in [b'|', b'=', _nbo]: order = b'' dtype = order + dtype if (repeats == b''): newitem = dtype else: newitem = (dtype, eval(repeats)) result.append(newitem) return result class dummy_ctype(object): def __init__(self, cls): self._cls = cls def __mul__(self, other): return self def __call__(self, *other): return self._cls(other) def __eq__(self, other): return self._cls == other._cls def _getintp_ctype(): val = _getintp_ctype.cache if val is not None: return val if ctypes is None: import numpy as np val = dummy_ctype(np.intp) else: char = dtype('p').char if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val _getintp_ctype.cache = None # Used for .ctypes attribute of ndarray class _missing_ctypes(object): def cast(self, num, obj): return num def c_void_p(self, num): return num class _ctypes(object): def __init__(self, array, ptr=None): if ctypes: self._ctypes = ctypes else: self._ctypes = _missing_ctypes() self._arr = array self._data = ptr if self._arr.ndim == 0: self._zerod = True else: self._zerod = False def data_as(self, obj): return self._ctypes.cast(self._data, obj) def shape_as(self, obj): if self._zerod: return None return (obj*self._arr.ndim)(*self._arr.shape) def strides_as(self, obj): if self._zerod: return None return (obj*self._arr.ndim)(*self._arr.strides) def get_data(self): return self._data def get_shape(self): return self.shape_as(_getintp_ctype()) def get_strides(self): return self.strides_as(_getintp_ctype()) def get_as_parameter(self): return self._ctypes.c_void_p(self._data) data = property(get_data, None, doc="c-types data") shape = property(get_shape, None, doc="c-types shape") strides = property(get_strides, None, doc="c-types strides") _as_parameter_ = property(get_as_parameter, None, doc="_as parameter_") # Given a datatype and an order object # return a new names tuple # with the order indicated def _newnames(datatype, order): oldnames = datatype.names nameslist = list(oldnames) if isinstance(order, str): order = [order] if isinstance(order, (list, tuple)): for name in order: try: nameslist.remove(name) except ValueError: raise ValueError("unknown field name: %s" % (name,)) return tuple(list(order) + nameslist) raise ValueError("unsupported order value: %s" % (order,)) def _copy_fields(ary): """Return copy of structured array with padding between fields removed. Parameters ---------- ary : ndarray Structured array from which to remove padding bytes Returns ------- ary_copy : ndarray Copy of ary with padding bytes removed """ dt = ary.dtype copy_dtype = {'names': dt.names, 'formats': [dt.fields[name][0] for name in dt.names]} return array(ary, dtype=copy_dtype, copy=True) def _getfield_is_safe(oldtype, newtype, offset): """ Checks safety of getfield for object arrays. As in _view_is_safe, we need to check that memory containing objects is not reinterpreted as a non-object datatype and vice versa. Parameters ---------- oldtype : data-type Data type of the original ndarray. newtype : data-type Data type of the field being accessed by ndarray.getfield offset : int Offset of the field being accessed by ndarray.getfield Raises ------ TypeError If the field access is invalid """ if newtype.hasobject or oldtype.hasobject: if offset == 0 and newtype == oldtype: return if oldtype.names: for name in oldtype.names: if (oldtype.fields[name][1] == offset and oldtype.fields[name][0] == newtype): return raise TypeError("Cannot get/set field of an object array") return def _view_is_safe(oldtype, newtype): """ Checks safety of a view involving object arrays, for example when doing:: np.zeros(10, dtype=oldtype).view(newtype) Parameters ---------- oldtype : data-type Data type of original ndarray newtype : data-type Data type of the view Raises ------ TypeError If the new type is incompatible with the old type. """ # if the types are equivalent, there is no problem. # for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4')) if oldtype == newtype: return if newtype.hasobject or oldtype.hasobject: raise TypeError("Cannot change data-type for object array.") return # Given a string containing a PEP 3118 format specifier, # construct a NumPy dtype _pep3118_native_map = { '?': '?', 'c': 'S1', 'b': 'b', 'B': 'B', 'h': 'h', 'H': 'H', 'i': 'i', 'I': 'I', 'l': 'l', 'L': 'L', 'q': 'q', 'Q': 'Q', 'e': 'e', 'f': 'f', 'd': 'd', 'g': 'g', 'Zf': 'F', 'Zd': 'D', 'Zg': 'G', 's': 'S', 'w': 'U', 'O': 'O', 'x': 'V', # padding } _pep3118_native_typechars = ''.join(_pep3118_native_map.keys()) _pep3118_standard_map = { '?': '?', 'c': 'S1', 'b': 'b', 'B': 'B', 'h': 'i2', 'H': 'u2', 'i': 'i4', 'I': 'u4', 'l': 'i4', 'L': 'u4', 'q': 'i8', 'Q': 'u8', 'e': 'f2', 'f': 'f', 'd': 'd', 'Zf': 'F', 'Zd': 'D', 's': 'S', 'w': 'U', 'O': 'O', 'x': 'V', # padding } _pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys()) def _dtype_from_pep3118(spec): class Stream(object): def __init__(self, s): self.s = s self.byteorder = '@' def advance(self, n): res = self.s[:n] self.s = self.s[n:] return res def consume(self, c): if self.s[:len(c)] == c: self.advance(len(c)) return True return False def consume_until(self, c): if callable(c): i = 0 while i < len(self.s) and not c(self.s[i]): i = i + 1 return self.advance(i) else: i = self.s.index(c) res = self.advance(i) self.advance(len(c)) return res @property def next(self): return self.s[0] def __bool__(self): return bool(self.s) __nonzero__ = __bool__ stream = Stream(spec) dtype, align = __dtype_from_pep3118(stream, is_subdtype=False) return dtype def __dtype_from_pep3118(stream, is_subdtype): field_spec = dict( names=[], formats=[], offsets=[], itemsize=0 ) offset = 0 common_alignment = 1 is_padding = False # Parse spec while stream: value = None # End of structure, bail out to upper level if stream.consume('}'): break # Sub-arrays (1) shape = None if stream.consume('('): shape = stream.consume_until(')') shape = tuple(map(int, shape.split(','))) # Byte order if stream.next in ('@', '=', '<', '>', '^', '!'): byteorder = stream.advance(1) if byteorder == '!': byteorder = '>' stream.byteorder = byteorder # Byte order characters also control native vs. standard type sizes if stream.byteorder in ('@', '^'): type_map = _pep3118_native_map type_map_chars = _pep3118_native_typechars else: type_map = _pep3118_standard_map type_map_chars = _pep3118_standard_typechars # Item sizes itemsize_str = stream.consume_until(lambda c: not c.isdigit()) if itemsize_str: itemsize = int(itemsize_str) else: itemsize = 1 # Data types is_padding = False if stream.consume('T{'): value, align = __dtype_from_pep3118( stream, is_subdtype=True) elif stream.next in type_map_chars: if stream.next == 'Z': typechar = stream.advance(2) else: typechar = stream.advance(1) is_padding = (typechar == 'x') dtypechar = type_map[typechar] if dtypechar in 'USV': dtypechar += '%d' % itemsize itemsize = 1 numpy_byteorder = {'@': '=', '^': '='}.get( stream.byteorder, stream.byteorder) value = dtype(numpy_byteorder + dtypechar) align = value.alignment else: raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s) # # Native alignment may require padding # # Here we assume that the presence of a '@' character implicitly implies # that the start of the array is *already* aligned. # extra_offset = 0 if stream.byteorder == '@': start_padding = (-offset) % align intra_padding = (-value.itemsize) % align offset += start_padding if intra_padding != 0: if itemsize > 1 or (shape is not None and _prod(shape) > 1): # Inject internal padding to the end of the sub-item value = _add_trailing_padding(value, intra_padding) else: # We can postpone the injection of internal padding, # as the item appears at most once extra_offset += intra_padding # Update common alignment common_alignment = _lcm(align, common_alignment) # Convert itemsize to sub-array if itemsize != 1: value = dtype((value, (itemsize,))) # Sub-arrays (2) if shape is not None: value = dtype((value, shape)) # Field name if stream.consume(':'): name = stream.consume_until(':') else: name = None if not (is_padding and name is None): if name is not None and name in field_spec['names']: raise RuntimeError("Duplicate field name '%s' in PEP3118 format" % name) field_spec['names'].append(name) field_spec['formats'].append(value) field_spec['offsets'].append(offset) offset += value.itemsize offset += extra_offset field_spec['itemsize'] = offset # extra final padding for aligned types if stream.byteorder == '@': field_spec['itemsize'] += (-offset) % common_alignment # Check if this was a simple 1-item type, and unwrap it if (field_spec['names'] == [None] and field_spec['offsets'][0] == 0 and field_spec['itemsize'] == field_spec['formats'][0].itemsize and not is_subdtype): ret = field_spec['formats'][0] else: _fix_names(field_spec) ret = dtype(field_spec) # Finished return ret, common_alignment def _fix_names(field_spec): """ Replace names which are None with the next unused f%d name """ names = field_spec['names'] for i, name in enumerate(names): if name is not None: continue j = 0 while True: name = 'f{}'.format(j) if name not in names: break j = j + 1 names[i] = name def _add_trailing_padding(value, padding): """Inject the specified number of padding bytes at the end of a dtype""" if value.fields is None: field_spec = dict( names=['f0'], formats=[value], offsets=[0], itemsize=value.itemsize ) else: fields = value.fields names = value.names field_spec = dict( names=names, formats=[fields[name][0] for name in names], offsets=[fields[name][1] for name in names], itemsize=value.itemsize ) field_spec['itemsize'] += padding return dtype(field_spec) def _prod(a): p = 1 for x in a: p *= x return p def _gcd(a, b): """Calculate the greatest common divisor of a and b""" while b: a, b = b, a % b return a def _lcm(a, b): return a // _gcd(a, b) * b # Exception used in shares_memory() class TooHardError(RuntimeError): pass class AxisError(ValueError, IndexError): """ Axis supplied was invalid. """ def __init__(self, axis, ndim=None, msg_prefix=None): # single-argument form just delegates to base class if ndim is None and msg_prefix is None: msg = axis # do the string formatting here, to save work in the C code else: msg = ("axis {} is out of bounds for array of dimension {}" .format(axis, ndim)) if msg_prefix is not None: msg = "{}: {}".format(msg_prefix, msg) super(AxisError, self).__init__(msg) def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs): """ Format the error message for when __array_ufunc__ gives up. """ args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] + ['{}={!r}'.format(k, v) for k, v in kwargs.items()]) args = inputs + kwargs.get('out', ()) types_string = ', '.join(repr(type(arg).__name__) for arg in args) return ('operand type(s) all returned NotImplemented from ' '__array_ufunc__({!r}, {!r}, {}): {}' .format(ufunc, method, args_string, types_string)) def _ufunc_doc_signature_formatter(ufunc): """ Builds a signature string which resembles PEP 457 This is used to construct the first line of the docstring """ # input arguments are simple if ufunc.nin == 1: in_args = 'x' else: in_args = ', '.join('x{}'.format(i+1) for i in range(ufunc.nin)) # output arguments are both keyword or positional if ufunc.nout == 0: out_args = ', /, out=()' elif ufunc.nout == 1: out_args = ', /, out=None' else: out_args = '[, {positional}], / [, out={default}]'.format( positional=', '.join( 'out{}'.format(i+1) for i in range(ufunc.nout)), default=repr((None,)*ufunc.nout) ) # keyword only args depend on whether this is a gufunc kwargs = ( ", casting='same_kind'" ", order='K'" ", dtype=None" ", subok=True" "[, signature" ", extobj]" ) if ufunc.signature is None: kwargs = ", where=True" + kwargs # join all the parts together return '{name}({in_args}{out_args}, *{kwargs})'.format( name=ufunc.__name__, in_args=in_args, out_args=out_args, kwargs=kwargs )